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Abstract

The adiabatic temperature displayed by the moving counterpart of Pohlhausen’s classical plate thermometer is investigated as a function of
the Prandtl number Pr. While in the classical case the heat release by viscous dissipation is due to the Blasius flow (of free stream velocity
U0), in the present case it is due to the boundary-layer flow induced by a continuous plane surface moving with the uniform velocity U0 in a
quiescent fluid (Sakiadis flow). It is found that the dimensionless adiabatic surface temperature (= recovery factor) in both cases is given by each
a monotonically increasing function of Pr. The two functions take the same value 1 at Pr = 1, but below and above of Pr = 1, they deviate from
each other significantly. The recovery factor of the moving plate thermometer is investigated analytically and numerically by using the series
solution of the problem obtained by the Merkin transformation method.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The aim of the present paper is to compare the effect of
viscous self heating of a fluid in two classical boundary layer
flows. The one is the Blasius flow driven by a free stream of
velocity U0 over a semi-infinite flat plate. The other one is a
Sakiadis flow, namely the boundary layer flow induced by a
continuous plane surface which issues from a narrow linear
slot and moves with constant velocity U0 in a quiescent fluid
(Schlichting and Gersten, [1], pp. 156 and 177, respectively,
as well as Sakiadis [2,3]). Assuming that the surface in both
cases is adiabatic (i.e. impermeable to heat), its temperature Tad
increases due to the volumetric heat generation by viscous dis-
sipation, exceeding the ambient temperature T∞ of the fluid by
a constant quantity �T,Tad = T∞ + �T . In case of the Bla-
sius flow, the adiabatic temperature increase �T of the plate
was calculated for moderate values of the Prandtl number Pr
long time ago by Ernst Pohlhausen and reported in his semi-
nal ZAMM-paper [4]. This device, i.e. the adiabatic plate in a
uniform stream, was named by Pohlhausen Plattenthermome-
ter (plate thermometer). Later on, the temperature displayed by
Pohlhausen’s plate thermometer was calculated by Eckert and
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Drewitz [5] for several other values of Pr up to Pr = 1000.
More accurate results for large Pr were reported by Meksyn [6].
Simple scaling relationships between �T and Pr have been ob-
tained by Gersten and Körner [7] for Pr � 1, and by Narashima
and Vasantha [8] for Pr � 1. Various correlating equations for
�T and Pr were proposed by Churchill and Char [9].

The goal of the present paper is to examine the Pr-depen-
dence of the adiabatic temperature increase �T displayed by
the moving counterpart of Pohlhausen’s plate thermometer,
which will be referred to as moving plate thermometer. As we
are aware, this problem has not been investigated until now. Our
approach is based on a series solution of the problem, obtained
by the Merkin transformation method [10].

2. Basic equations

Both the Pohlhausen plate thermometer and its moving
counterpart are governed by the same continuity, momentum
and energy equations, which in the boundary layer approxima-
tion read [1]
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Nomenclature

A dimensionless expansion coefficients, Eq. (21)
cp specific heat capacity at constant pressure, Eq. (1)
f dimensionless stream function, Eq. (4)
Pr Prandtl number, Pr = υ/α

r recovery factor, Eq. (11)
T temperature
T0 = U2

0 /(2cp) stagnation point temperature
U0 free stream and surface velocity, Eqs. (2), (3)
u dimensional longitudinal velocity, Eq. (4)
v dimensional transversal velocity, Eq. (4)
z dimensionless independent variable, Eq. (17)
x dimensional wall coordinate
y dimensional transversal coordinate

Y dimensionless dependent variable, Eq. (17)

Greek symbols

α thermal diffusivity, Eq. (1)
δ thickness temperature boundary layer
ε tuning parameter, Eq. (30)
υ kinematic viscosity, Eq. (1)
η similarity independent variable, Eq. (4)
θ dimensionless temperature, Eq. (5)

Subscripts

∞ conditions at infinity
M Moving plate thermometer
P Pohlhausen’s plate thermometer
u
∂T

∂x
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∂T
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= α

∂2T

∂y2
+ υ

cp

(
∂u

∂y

)2

(1)

(The coordinate system corresponds respectively to Figs. 6.5
and 7.6 of [1].)

The boundary conditions for the Pohlhausen plate ther-
mometer are

u(x,0) = 0, v(x,0) = 0, u(x,∞) = U0

∂T

∂y
(x,0) = 0, T (x,∞) = T∞ (“Pohlhausen”) (2)

The same boundary conditions hold also for the moving plate
thermometer, except for the conditions on the parallel velocity
component which are

u(x,0) = U0, u(x,∞) = 0 (“Moving”) (3)

The solution for the velocity field can be obtained in both cases
in the usual way [1] from the same stream function

ψ(x, y) = √
2υxU0f (η), η =

√
U0

2υx
· y (4)

The corresponding temperature field has the form

T (x, y) = T∞ + T0 · θ(η), T0 = U2
0

2cp

(5)

In the above equations, f = f (η) is the similar stream function,
θ = θ(η) the similar temperature field and T0 = U2

0 /(2cp) de-
notes the stagnation point temperature. The functions f = f (η)

and θ = θ(η) satisfy the equations, [1–3],

f ′′′ + ff ′′ = 0 (6)

θ ′′ + Prf θ ′ = −2Prf ′′2 (7)

for both plate thermometers, but the (velocity) boundary condi-
tions are different, namely

f (0) = 0, f ′(0) = 0, f ′(∞) = 1

θ ′(0) = 0, θ(∞) = 0 (“Pohlhausen”) (8)

for the Pohlhausen thermometer, and
f (0) = 0, f ′(0) = 1, f ′(∞) = 0

θ ′(0) = 0, θ(∞) = 0 (“Moving”) (9)

for the moving plate thermometer, respectively (the primes de-
note differentiation with respect to η). The velocity bound-
ary value problems (i.e. the f -problems) are decoupled from
the temperature problems. Their numerical solutions are well
known [1] and the corresponding values of the similar wall
shear stress f ′′(0) are f ′′(0) = 0.46960000 (“Pohlhausen”) and
f ′′(0) = −0.62755488 (“Moving”), respectively.

According to Eq. (5), the adiabatic temperature displayed
by the plate thermometers is

Tad ≡ T |y=0 = T∞ + �T, �T = T0θ(0) (10)

where the dimensionless wall temperature θ(0) coincides with
the recovery factor,

θ(0) = Tad − T∞
T0

≡ r(Pr) (11)

Consequently, the dependence of the recovery factor r on the
Prandtl number is the feature of main physical and engineering
interest of the problem.

3. The Pohlhausen solution

As shown already by Pohlhausen [4], the solution of Eq. (7)
which satisfies the boundary conditions (8) can be expressed in
terms of the similar shear stress distribution f ′′(η) in a double
integral form, which according to [1] can be transcribed to

θ(η) = 2Pr

∞∫
η

[
f ′′(ξ)

]Pr

( ξ∫
0

[
f ′′(z)

]2−Pr dz

)
dξ (12)

Thus, the recovery factor of Pohlhausen’s plate thermometer is
obtained as

r(Pr) = 2Pr

∞∫ [
f ′′(ξ)

]Pr

( ξ∫ [
f ′′(z)

]2−Pr dz

)
dξ (13)
0 0
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For Pr = 1, the integrals can easily be evaluated and yield

θ(η) = 1 − f ′2(η) (Pr = 1) (14)

and

r(1) = 1 (15)

respectively. Since the Blasius equation (6) along with the f -
boundary conditions (8) does not admit solution in a closed
analytical form, the functions f ′′(η) and f ′(η) have been eval-
uated numerically [1–8].

4. Solution for the moving plate thermometer

4.1. The double integral solution

The double integral solution (12), as well as the expression
(13) of the recovery factor are valid also in the case of mov-
ing plate thermometer. However, due to the different velocity
boundary conditions, the function f (η) is different, and thus the
coincidence is formal. This aspect becomes manifest already in
the case Pr = 1, in which Eq. (12) for the moving plate ther-
mometer yields

θ(η) = [
2 − f ′(η)

] · f ′(η) (Pr = 1) (16)

Although Eqs. (14) and (16) give for Pr = 1 the same recov-
ery factor r(1) = 1, the temperature fields (14) and (16) deviate
from each other almost everywhere (details in Section 5 below).

4.2. Series solution by the Merkin transformation method

To calculate the recovery factor of the moving plate ther-
mometer according to Eq. (13), the standard method would be
to solve the corresponding boundary value problem forf ′′(η)

numerically. In the present section, however, we follow an al-
ternate approach and give an analytical series solution for f ′′(η)

with the aid of the Merkin transformation method, [10].
The basic feature of the Merkin transformation is that it

reverses role of the stream function f in the boundary value
problem (6), (9) from that of the old dependent variable to that
of a new independent variable φ ≡ f∞ − f and at the same
time, it transfers the role of the dependent variable from f

to p(φ) ≡ df/dη, where f∞ denotes the similar entrainment
velocity, f∞ = f (∞). For later convenience, we modify the
Merkin transformation slightly by changing instead of φ and
p(φ) to a new independent variable z and to a new dependent
one, Y = Y(z), which we define as follows [11]:

z = φ

f∞
= 1 − f

f∞
, Y = p(φ)

f 2∞
= 1

f 2∞
df

dη
(17)

Thus, the third-order boundary value problem (6), (9) reduces
to the second-order one

d

dz

(
Y

dY

dz

)
+ (z − 1)

dY

dz
= 0 (18)

Y(0) = 0, Y (1) = 1
2

(19)

f∞
where the first condition (19) has been obtained from f ′(∞) =
0, and the second one from f (0) = 0 and f ′(0) = 1. Further-
more, the expression (13) of the recovery factor r(Pr) = θ(0)

transcribes with the new variables z and Y = Y(z) to

r(Pr) = 2Prf 4∞

1∫
0

[
Y(ξ)

]Pr−1
[

dY(ξ)

dξ

]Pr

×
( 1∫

ξ

[
Y(z)

]1−Pr
[

dY(z)

dz

]2−Pr

dz

)
dξ (20)

This expression involves only the new independent variable Y

and its first derivative dY/dz, instead of the second derivatives
f ′′(η) of the similar stream function f (η) present in Eq. (13).

Now, looking for the solution of the boundary value problem
(18), (19) in the power series form [10]

Y =
∞∑

n=0

Anz
n (21)

one obtains for the coefficients An the system of equations (see
also [11]),

k∑
n=0

(n + 1)
[
(n + 2)An+2Ak−n + (k − n + 1)An+1Ak−n+1

]
= (k + 1)Ak+1 − kAk, k = 0,1,2, . . . (22)

The boundary condition Y(0) = 0 implies A0 = 0. Thus, one
obtains from Eq. (22) for the next two coefficients the values

A1 = 1, A2 = −1/4 (23)

The subsequent coefficients A3,A4,A5, . . . can then be ob-
tained recursively according to

Ak = 1 − k

k2
Ak−1 − 1 + k

2k
·
k−1∑
n=2

AnAk−n+1, k = 3,4,5, . . .

(24)

Specifically,

A3 = 1

72
, A4 = 1

576
, A5 = 11

86400

A6 = − 1

115200
, . . . (25)

Thus, the second boundary condition (19) yields for f∞ the
explicit equation

f∞ =
( ∞∑

k=1

Ak

)−1/2

(26)

the wall shear stress f ′′(0) is obtained as

f ′′(0) = −f∞
dY

dz

∣∣∣∣
z=1

= −
∑∞

k=1 kAk(∑∞
k=1 Ak

)1/2
(27)

and the recovery factor (20) becomes
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r(Pr)

2Pr
=

∫ 1
0

(∑∞
k=1 Akξ

k
)Pr−1(∑∞

k=1 kAkξ
k−1

)Pr

(∑∞
k=1 Akξk

)4

×
[ 1∫

ξ

( ∞∑
k=1

Akz
k

)1−Pr( ∞∑
k=1

kAkz
k−1

)2−Pr

dz

]
dξ

(28)

Eqs. (25) show that with increasing n the coefficients of the
series (21) decrease rapidly. Already with the first 10 term of the
series involved, one obtains from Eqs. (26) and (27) the values
of f∞ and f ′′(0) with an accuracy of 7 digits,

f∞ = 1.142773, f ′′(0) = −0.627554 (29)

We mention that the rate of convergence of the series occurring
in Eqs. (21) and (26)–(28) can be accelerated once more with
the aid of the classical Euler–Knopp type series transformation,
[12], or with its improved form proposed by Gabutti and Ly-
ness [13]. Applied, e.g., to the series (21), the transformation of
Gabutti and Lyness gives

Y(z) =
∞∑

n=0

n!
(1 − ε)n+1

(
n∑

j=0

(−ε)n−j

(n − j)!j !Ajz
j

)
(30)

Here ε is a tuning parameter which can be chosen at conve-
nience (for ε = −1 one recovers the classical Euler–Knopp type
transformation).

5. Discussion

For a clear distinction between the quantities which refer
to the Pohlhausen and the moving plate thermometer, here-
after the subscripts P (Pohlhausen) and M (Moving) will be
used.

As already mentioned, for Pr = 1 the recovery factors r(Pr)
of the two thermometers coincide, rP (1) = rM(1) = 1. In spite
of this fact, the two temperature fields (14) and (16) deviate
from each other almost everywhere. This latter feature is il-
lustrated in Fig. 1. The 1%-thicknesses of these two similar
temperature boundary layers, i.e. the values η = δP and η = δM

which solve the respective equations θ(δ) = θ(0)/100, also dif-
fer from each other, namely, δP = 3.72608 and δM = 5.10821.

For Pr �= 1, on the other hand, the difference between the
two temperature fields θP (η) and θM(η), the recovery factors
rP (Pr) and rM(Pr), as well as the 1%-thicknesses δP (Pr) and
δM(Pr), may become quite large, as shown in Figs. 2 and 3. The
plots of the 1%-thicknesses δP (Pr) and δM(Pr) in the Prandtl
number range 0.1 � Pr � 7 are shown in Fig. 4. While for
Pr � 1, δP and δM approach each other (both going to zero as
Pr → ∞), for small values of Pr, δM becomes much larger than
δP . For instance, for Pr = 10−3, one has δM(10−3) = 4031.00,
while δP (10−3) = 82.6067. Furthermore, in Fig. 5 the recov-
ery factors r(Pr) of the two thermometers as functions of
the Prandtl number are compared to each other in the range
0 < Pr � 7. It is seen once more that rP (1) = rM(1) = 1,
while rP (Pr) < rM(Pr) for Pr < 1 and rP (Pr) > rM(Pr) for
Pr > 1. Therefore, the behavior of the recovery factors of the
Fig. 1. The dimensionless adiabatic temperature profiles θP (η) and θM(η) of
the Pohlhausen and the moving plate thermometer, respectively, corresponding
to Pr = 1. In this (and only in this) case the two recovery factors (marked by
dots) are equal, rP = θP (0) = rM = θM(0) = 1. The 1%-thicknesses δP (Pr)
and δM(Pr) of the two temperature boundary layers are δP (1) = 3.72608 and
δM(1) = 5.10821.

Fig. 2. The dimensionless adiabatic temperature profiles θP (η) and θM(η) of
the Pohlhausen and the moving plate thermometer, respectively, corresponding
to Pr = 0.1. The two recovery factors (marked by dots) are, rP = 0.307308 and
rM = 0.755620, i.e., rM = 2.46rP . The 1%-thicknesses δP (Pr) and δM(Pr)
of the two temperature boundary layers are δP (0.1) = 0.28956 and δM(0.1) =
41.0626.

two plate thermometers is basically different both for small and
large Prandtl numbers. In the range Pr � 1, where according to
Gersten and Körner [7] rP (Pr) ≈ 0.9254 · Pr1/2, the recovery
factor rM(Pr) of the moving plate thermometer increases with
increasing values of Pr much steeper. Already at Pr = 10−3,
it reaches the value rM(10−3) = 0.713753, while the exact
value of rP (Pr) at this Prandtl number is only rP (10−3) =
0.029458, i.e., more than 24 times smaller than rM . At large
values of Pr, where according to Narashima and Vasantha [8]
rP (P r) = 1.922 · (Pr + 0.805)1/3 − 1.341, the situation be-
comes reversed. For Pr = 103, e.g., one has rM(103) = 3.39338
and rP (103) = 17.892, i.e., in this case rP is more than 5 times
larger than rM .
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Fig. 3. The dimensionless adiabatic temperature profiles θP (η) and θM(η) of
the Pohlhausen and the moving plate thermometer, respectively, corresponding
to Pr = 10. The two recovery factors (marked by dots) are, rP = 2.961587 and
rM = 1.638258, i.e., rM = 0.55rP . The 1%-thicknesses δP (Pr) and δM(Pr)
of the two temperature boundary layers are δP (10) = 2.2464 and δM(10) =
2.35127.

Fig. 4. Plots of the 1%-thicknesses δP (Pr) and δM(Pr) of the two temperature
boundary layers in the Prandtl number range 0.1 � Pr � 7.

Fig. 5. Plots of the recovery factors rP (Pr) and rM(Pr) of the Pohlhausen and
the moving plate thermometer, respectively, as functions of the Prandtl number
Pr. For Pr = 1 the two recovery factors coincide, rP (1) = rM(1) = 1, but for
Pr � 1 and Pr � 1, they deviate from each other substantially.

Fig. 6. Exact values of the recovery factor rM(Pr) compared to the approximate
ones (dashed curve) given by the correlating equation (37), rM(Pr) ≈ Pr1/5.

Table 1
Comparison of the exact values of the recovery factor of the moving plate ther-
mometer for air and water to the values obtained from the correlating equation
(31), rM(Pr) ≈ Pr1/5. The values of Pr are taken at 20 ◦C and atmospheric
pressure, [14]

Fluid Pr rM(Pr) Deviation,

Exact-Pr1/5
Exact Pr1/5

Dry air 0.72 0.940873 0.936411 0.47%
Water 7.07 1.522487 1.478713 2.87%

A remarkable feature of the moving plate thermometer is
that its recovery factor rM(Pr) scales with Pr according to the
simple correlating equation

rM(Pr) ≈ Pr1/5 (31)

over a large range of values of the Prandtl number. This scaling
property is illustrated in Fig. 6. For Pr = 1, Eq. (31) is exact,
while both below and above of Pr = 1 it yields values close to
the exact values of rM(Pr) obtained either from Eq. (16) for η =
0, or from Eq. (28) (or from the direct numerical solution the
boundary value problem (6), (7), (9)). The performance of the
correlating equation compared to the exact values of rM(Pr),
can be seen in Table 1 for the case of air and water.

6. Summary and conclusions

The adiabatic temperature increase �T displayed by the uni-
formly moving plate thermometer has been compared in the
present paper to that of Pohlhausen’s classical (resting) plate
thermometer. The surface temperature increment �T above the
ambient temperature, nondimensionalized with the aid of the
stagnation point temperature T0, specifies the recovery factor
r = r(Pr), which is the quantity of basic physical and engineer-
ing interest of the problem. The main results of the paper can
be summarized as follows.

1. For Pr = 1 the recovery factors of the two thermome-
ters coincide, rP (1) = rM(1) = 1. In spite of this fact,
the two temperature fields θP (η) and θM(η) deviate from
each other almost everywhere. The 1%-thicknesses δP =
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3.72608 and δM = 5.10821 of these two temperature
boundary layers differ from each other sensitively.

2. For all Pr < 1, the inequality rM(Pr) > rP (Pr), and for all
Pr > 1, the inequality rM(Pr) < rP (Pr) holds.

3. For the moving plate thermometer, the correlating equation
rM(Pr) = Pr1/5 is applicable in a large range of the Prandtl
number Pr (e.g., from Pr = 0.72, air, to Pr = 7.07, water,
it applies with an accuracy of 0.47% to 2.87%).

4. The 1%-thicknesses δP (Pr) and δM(Pr) of the two tem-
perature boundary layers approach each other as Pr → ∞,
while for small values of Pr, δM becomes much larger
than δP .

We may conclude that, although the boundary layer flow in-
duced over a resting semi-infinite plate by a uniform free stream
(Blasius flow), on the one hand, and the boundary layer flow
induced by a uniformly moving continuous plane surface in a
quiescent fluid (Sakiadis flow), on the other hand seem to be
nearly identical flow phenomena, the viscous self heating ef-
fect is able to produce a significant physical distinction between
these two flows.
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